
C2 server outage incident report 
Wednesday, August 10, 2016 
By the C2 team 

As we described in an earlier Slack post, C2 had an outage which we resolved on 
Monday. That post incorrectly stated that no customers were affected. Today we’re 
providing an incident report that details the nature of the outage and our response. We 
apologize to everyone affected by this issue. We intend to do better than this, and are 
working to learn from this experience. 

Issue Summary 

From late August 4 to 9:47 PM ET August 8, visits to the C2 Dev and Staging servers 
resulted in either 500 error response pages, or silently failing worker processes. At its 
peak, the issue prevented a GSA customer from performing a scheduled demo for other 
GSA staff. The root cause of this outage was a loss of server-to-server connections that 
exposed weaknesses in our deploy process. 

Timeline (all times Eastern Time) 

August 4 
Late in the day: Code deploy begins 
 
August 5 
12:19 AM: We discovered Staging outage 
2:30 PM – 9:00 PM: Multiple failed manual restart attempts 
 
August 8 
9:52 AM: We discovered Dev outage 
1:16 PM: Staging is partially operational 
5:00 PM: Staging is fully operational 
9:47 PM: Dev is fully operational 
 

Root Cause 

Some time late August 4, two of C2's three environments lost their bindings to their 
database and queue services, due to a code deployment. We don't know how the 
deployment caused this. With no network access to these services, the Dev and Staging 
web servers began failing. These failures exposed a weakness in our deployment scripts 
which caused re-starts and re-deploys to only duplicate the existing misconfigured 



environment. This in turn revealed that C2 is not controlling its deployment with 
manifest configuration files. At some point, the database server bindings were restored, 
but not the bindings to the queue service. This resulted in the appearance of full 
operation even though important functions were silently failing. 

Resolution and Recovery 

 
At 12:19 AM August 5 we discovered by manual observation that Staging was down, and 
posted it in the team Slack channel. The next morning in our weekly retrospective 
meeting we discussed the outage and set out to determine its extent and causes. 
 
In the morning and afternoon we discussed the problem with cloud.gov support and 
engineers who had previously worked on C2. At 5:30 PM we learn that Staging is down 
because it could not connect to its database service. We attempted to restart the server 
multiple times and via different methods, all of which fail. 
 
At 9:28 AM August 8, we learn that a GSA staff member was trying to use the Staging 
server unsuccessfully. He was scheduled to give a C2 demo to other GSA staff. We 
advised him to use the Dev server. At 9:52 AM we discovered that the Dev server was 
down, totally, or in part. We informed the customer and performed the demo by running 
C2 locally on a laptop. 
 
At 1:16 PM, Staging is partially operational. We're not clear how this occurred. We 
report internally that it's fully operational. At 1:50 PM, we realize that Staging is not 
fully operational and correct our report. 
 
At 4:30 PM, we connect back with cloud.gov support and together bring Staging fully 
online at 5:00 PM. We learn that our custom deploy scripts are not using the prescribed 
"manifest file" method of deploying to Cloud.gov — although they appear to be. 
Instead, the scripts auto-generate manifest files during the deploy process, based on 
the currently deployed system. They do this as a by-product of the particular 
"zero-downtime" deploy strategy we use. We apply the quick fixes to Dev and it 
becomes fully operational at 9:47 PM. 
 

Corrective and Preventive Measures 

In the past several days, we've talked with many people at 18F familiar with application 
deployment to Cloud.gov. We've arrived at a set of actions we will take to address the 
issues, help prevent them from recurring, and inform us if they do: 
 



● Replace our current "zero-downtime" deploy process with a simple, "plain vanilla" 
manifest-based deploy setup. 

● Create an architecture diagram showing the expected state of the deployed 
application. 

● Document the expected output of diagnostic tools such as `cf services`. 
● Configure monitoring services to report when outages like these occur, whether in 

full or in part, as we experienced. 
 
We appreciate your patience and again apologize for the impact to our customers, and 
members of 18F. 
 
Sincerely, 
 
The C2 Team 


